Abstract

This manuscript presents a new method for fitting ellipses to two-dimensional data using the confocal hyperbola approximation to the geometric distance of points to ellipses. The proposed method was evaluated and compared to established methods on simulated and real-world datasets. First, it was revealed that the confocal hyperbola distance considerably outperforms other distance approximations such as algebraic and Sampson. Next, the proposed ellipse fitting method was compared with five reliable and established methods proposed by Halir, Taubin, Kanatani, Ahn and Szpak. The performance of each method as a function of rotation, aspect ratio, noise, and arc-length were examined. It was observed that the proposed ellipse fitting method achieved almost identical results (and in some cases better) than the gold standard geometric method of Ahn and outperformed the remaining methods in all simulation experiments. Finally, the proposed method outperformed the considered ellipse fitting methods in estimating the geometric parameters of cylindrical mechanical pipes from point clouds. The results of the experiments show that the confocal hyperbola is an excellent approximation to the true geometric distance and produces reliable and accurate ellipse fitting in practical settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.