Abstract

Internal structural layouts and component sizes of aircraft wing structures have a significant impact on aircraft performance such as aeroelastic characteristics and mass. This work presents an approach to achieve simultaneous partial topology and sizing optimization of a three-dimensional wing-box structure. A multi-objective optimization problem is assigned to optimize lift effectiveness, buckling factor and mass of a structure. Design constraints include divergence and flutter speeds, buckling factor and stresses. The topology and sizing design variables for wing internal components are based on a ground element approach. The design problem is solved by multi-objective population-based incremental learning (MOPBIL). The Pareto optimum results lead to unconventional wing structures that are superior to their conventional counterparts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.