Abstract

High-entropy alloys (HEAs) are attracting increased attention as an alternative to noble metals for various catalytic reactions. However, it is of great challenge and fundamental importance to develop spatial HEA heterostructures to manipulate d-band center of interfacial metal atoms and modulate electron-distribution to enhance electrocatalytic activity of HEA catalysts. Herein, an efficient strategy is demonstrated to construct unique well-designed HEAs spatial heterostructure electrocatalyst (HEA@Pt) as bifunctional cathode to accelerate oxygen reduction and evolution reaction (ORR/OER) kinetics for Li-O2 batteries, where uniform Pt dendrites grow on PtRuFeCoNi HEA at a low angle boundary. Such atomically connected HEA spatial interfaces engender efficient electrons from HEA to Pt due to discrepancy of work functions, modulating electron distribution for fast interfacial electron transfer, and abundant active sites. Theoretical calculations reveal that electron redistribution manipulates d-band center of interfacial metal atoms, allowing appropriate adsorption energy of oxygen species to lower ORR/OER reaction barriers. Hence, Li-O2 battery based on HEA@Pt electrocatalyst delivers a minimal polarization potential (0.37V) and long-term cyclability (210 cycles) under a cut-off capacity of 1000mAhg-1 , surpassing most previously reported noble metal-based catalysts. This work provides significant insights on electron-modulation and d-band center optimization for advanced electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.