Abstract
It is known that Intuitionistic fuzzy models give more precision, flexibility and compatibility to the system as compared to the classic and fuzzy models. Intuitionistic fuzzy tree has an important role in neural networks, computer networks, and clustering. In the design of a network, it is important to analyze connections between the levels. In addition, the intuitionistic fuzzy tree is becoming increasingly significant as it is applied to different areas in real life. The study proposes the novel concepts of intuitionistic fuzzy graph (IFG) and some basic definitions. We investigate the types of arcs, for example, alpha _{mu }-strong, beta _{mu }-strong, and delta _{mu }-arc in an intuitionistic fuzzy graph, and introduce some of their properties. In particular, the present work develops the concepts of intuitionistic fuzzy bridge (IFB), intuitionistic fuzzy cut nodes (IFCN) and some important properties of an intuitionistic fuzzy bridge. Next, we define an intuitionistic fuzzy cycle (IFC) and an intuitionistic fuzzy tree (IFT). Likewise, we discuss some properties of the IFT and the relationship between an intuitionistic fuzzy tree and an intuitionistic fuzzy cycle. Finally, an application of intuitionistic fuzzy tree is illustrated in other sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.