Abstract

Meshless methods have been extensively popularized in literature in recent years, due to their flexibility in solving boundary value problems. Two kinds of truly meshless methods, the meshless local boundary integral equation (MLBIE) method and the meshless local Petrov–Galerkin (MLPG) approach, are presented and discussed. Both methods use the moving least-squares approximation to interpolate the solution variables, while the MLBIE method uses a local boundary integral equation formulation, and the MLPG employs a local symmetric weak form. The two methods are truly meshless ones as both of them do not need a ‘finite element or boundary element mesh’, either for purposes of interpolation of the solution variables, or for the integration of the ‘energy’. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. Numerical examples presented in the paper show that high rates of convergence with mesh refinement are achievable. In essence, the present meshless method based on the LSWF is found to be a simple, efficient and attractive method with a great potential in engineering applications. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.