Abstract
Directed evolution of stereo- and regioselective enzymes constitutes a prolific source of catalysts for asymmetric transformations in organic chemistry. In this endeavor (iterative) saturation mutagenesis at sites lining the binding pocket of enzymes has emerged as the method of choice, but uncertainties regarding the question of how to group many residues into randomization sites and how to choose optimal upward pathways persist. Two new approaches promise to beat the numbers problem effectively. One utilizes a single amino acid as building block for the randomization of a 10-residue site, the other also employs only one but possibly different amino acid at each position of a 9-residue site. The small but smart libraries provide highly enantioselective epoxide hydrolase or lipase mutants, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.