Abstract
Fluorescence correlation spectroscopy (FCS) is a powerful tool to measure useful physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in model and cell membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we assess the potential and limitations of standard confocal FCS on lipid membranes and present recent developments which facilitate accurate and quantitative measurements on such systems. In particular, we discuss calibration-free diffusion and concentration measurements using z-scan FCS and two focus FCS and present several approaches using scanning FCS to accurately measure slow dynamics. We also show how surface confined FCS enables the study of membrane dynamics even in presence of a strong cytosolic background and how FCS with a variable detection area can reveal submicroscopic heterogeneities in cell membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.