Abstract

Chitosan is known for its hemostatic and antimicrobial properties and might be useful for temporary coating of removable dentures or intraoral splints to control bleeding after oral surgery or as a supportive treatment in denture stomatitis. This study investigated a new method to adhere chitosan to polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET). There were 70 cylindrical specimens made from PMMA and 70 from PET (13 mm diameter, 6 mm thickness). The materials with ten specimens each were sandblasted at 2.8 or 4.0 bar with aluminum oxide 110 μm or/and aluminum oxide coated with silica. After sandblasting, all specimens were coated with a 2% or 4% acetic chitosan solution with a thickness of 1 mm. Then the specimens were dried for 120 min at 45 °C. The precipitated chitosan was neutralized with 1 mol NaOH. After neutralization, all specimens underwent abrasion tests using the tooth-brushing simulator with soft brushes (load 2N, 2 cycles/s, 32 °C, 3000 and 30,000 cycles). After each run, the specimen surfaces were analyzed for areas of remaining chitosan by digital planimetry under a light microscope. The best chitosan adhesion was found after sandblasting with aluminum oxide coated with silica (U-Test, p < 0.05) in both the PMMA and the PET groups. Hence, with relatively simple technology, a reliable bond of chitosan to PMMA and PET could be achieved.

Highlights

  • The best chitosan adhesion was found after sandblasting with aluminum oxide coated with silica (U-Test, p < 0.05) in both the polymethyl methacrylate (PMMA) and the polyethylene terephthalate (PET) groups

  • Chitosan (CS) is an amino-polysaccharide chain obtained in the reaction of deacetylation of chitin [1]

  • Its structure is based on repetitive D-glucosamine units linked with fewer, randomly distributed N-acetyl-D-glucosamine units by a β-1,4-glycosidic bond [1,2]

Read more

Summary

Introduction

Chitosan (CS) is an amino-polysaccharide chain obtained in the reaction of deacetylation of chitin [1]. CS is formed during the process of N-deacetylation of chitin, which involves the disruption of acetamide bonds in order to remove the acetyl group [3]. Chitosan is a non-toxic, biodegradable, biofunctional, and biocompatible compound with hydrophilic properties [4,5]. It shows both chemoattractant and antimicrobial activity and has the ability to activate macrophages and neutrophils. It stimulates cellular activity of, for example, fibroblasts, as well as detects growth factors, stimulates the production of cytokines and collagen, and promotes the processes of angiogenesis [6]

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call