Abstract
A variety of new complex waves representing solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity is investigated. Two different approaches are used, namely the generalized exponential function and the unified methods. Complex periodic, solitary, soliton, and elliptic wave solutions of phenomena that occur in nonlinear optics or in plasma physics are obtained. The physical meaning of the geometrical structures for some solutions is discussed for different choices of the free parameters. It is shown that the proposed methods lead to powerful mathematical tools for obtaining the exact traveling wave solutions of complex nonlinear evolution equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.