Abstract
Potential theory and Dirichlet’s priciple constitute the basic elements of the well-known classical theory of Markov processes and Dirichlet forms. This paper presents new classes of fractional spatiotemporal covariance models, based on the theory of non-local Dirichlet forms, characterizing the fundamental solution, Green kernel, of Dirichlet boundary value problems for fractional pseudodifferential operators. The elements of the associated Gaussian random field family have compactly supported non-separable spatiotemporal covariance kernels admitting a parametric representation. Indeed, such covariance kernels are not self-similar but can display local self-similarity, interpolating regular and fractal local behavior in space and time. The associated local fractional exponents are estimated from the empirical log-wavelet variogram. Numerical examples are simulated for illustrating the properties of the space–time covariance model class introduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.