Abstract

Bisphenol A(BPA) is a common industrial chemical with significant adverse impacts on Environment and human health. The present work evaluates the efficacy of pulsed light (PL) and Fe2+ ions in activation of sodium percarbonate (SPC) to produce hydroxyl (OH•) and carbonate (CO3•–) radicals for efficient degradation of BPA. The effects of operational parameters such as solution pH, SPC and Fe2+ dose as well as the mixture composition were analyzed and the decomposition pathway of BPA proposed. The BPA was successfully degraded at the initial concentration of 15.0 mg/L and optimized conditions by the PL/Fe2+/SPC process (99.67 ± 0.29%). A rapid reduction in the degradation of BPA was observed with increasing pH due to OH• radicals quenching and also the precipitation of Fe2+. Under the optimized conditions, degradation of BPA by PL/Fe2+/SPC process was five-times faster than the individual process. The quenching experiments revealed that radical and non-radical pathways on BPA degradation was accomplished with OH•, CO3•–, O2•–, and 1O2, while OH• and CO3•– radicals (as a dominant radicals) have the contributions of 80.23% and 8.30%, respectively. Based on the detected byproducts, ring cleavage can be considered as the main transformation mechanism of BPA by the PL/Fe2+/SPC process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call