Abstract

This work presents block codes over Gaussian integers. We introduce Gaussian integer rings which extend the number of possible signal constellations over Gaussian integer fields. Many well-known code constructions can be used for codes over Gaussian integer rings, e.g., the Plotkin construction or product codes. These codes enable low complexity decoding in the complex domain. Furthermore, we demonstrate that the concept of set partitioning can be applied to Gaussian integers. This enables multilevel code constructions. In addition to the code constructions, we present a low complexity soft-input decoding algorithm for one Mannheim error correcting codes. The presented decoding method is based on list decoding, where the list of candidate codewords is obtained by decomposing the syndrome into two sub-syndromes. Considering all decompositions of the syndrome we construct lists of all possible errors of Mannheim weight two. In the last decoding step the squared Euclidean distance is used to select the best codeword from the list. Simulation results for the additive white Gaussian noise channel demonstrate that the proposed decoding method achieves a significant coding gain compared with hard-input decoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.