Abstract

We examined the challenge of preparing CO2-selective bifunctional three-dimensional Cu-metal–organic frameworks (Cu-MOFs) for use in mixed-matrix membranes (MMMs) fabricated on an asymmetric polymer support. Two different gas-selective micro-sized frameworks, [{Cu2(Glu)2(µ-bpa)}·(CH3CN)]n (Cu-MOF1) and [{Cu2(Glu)2(µ-bpp)}·(C3H6O)]n (Cu-MOF2) (Glu=glutarate, bpa=1,2-bis(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane), were synthesised and dispersed in polyoxazoline (POZ), as a matrix for the fabrication of the MMMs. SEM imaging indicated relatively good adhesion between the Cu-MOFs and POZ, without any surface treatment. The ideal selectivity of CO2/N2 was enhanced significantly in the Cu-MOF/POZ MMM, compared to that in a pristine POZ asymmetric membrane. Improvement in the CO2/N2 selectivity of the membranes was achieved via both high adsorption selectivity of CO2 over N2 by the Cu-MOFs, and the difference in pore sizes. The fabrication methods that use gas-selective MOFs may create new opportunities for gas-selective MOF/polymer combinations for MMMs with useful properties for large volume separations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.