Abstract

In this paper the results obtained by the use of new CNN based visual algorithms for the control of welding processes are described. The growing number of laser welding applications from automobile production to micro mechanics requires fast systems to create closed loop control for error prevention and correction. Nowadays the image processing frame rates of conventional architectures [1] are not sufficient to control high speed laser welding processes due to the fast fluctuation of the full penetration hole [3]. This paper focuses the attention on new strategies obtained by the use of the Eye-RIS system v1.2 which includes a pixel parallel Cellular Neural Network (CNN) based architecture called Q-Eye [2]. In particular, new algorithms for the full penetration hole detection with frame rates up to 24 kHz will be presented. Finally, the results obtained performing real time control of welding processes by the use of these algorithms will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.