Abstract

In this study a new Green’s function and a new Green-type integral formula for a boundary value problem (BVP) in thermoelastostatics for a quadrant are derived in closed form. On the boundary semi-straight-lines twice mixed homogeneous mechanical boundary conditions (one boundary semi-straight-line is free of loadings and normal displacements and tangential stresses are prescribed on the other one) are prescribed. The thermoelastic displacements are subject by a heat source applied in the inner points of the quadrant and by mixed non-homogeneous boundary heat conditions (on one boundary semi-straight-line the temperature is prescribed and the heat flux is given on the other one). When thermoelastic Green’s function is derived the thermoelastic displacements are generated by an inner unit point heat source, described by δ Dirac’s function. All results are obtained in elementary functions that are formulated in a special theorem. A closed-form solution for a particular BVP of thermoelastostatics for a quadrant also is included. Using the proposed approach it is possible to extend the obtained for quadrant results to any other canonical Cartesian domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call