Abstract

Applicability and productivity of new click chemistry that exploits a nitrile N-oxide as a 1,3-dipole in polymer synthesis were demonstrated by the polymerization of diynes with a homo ditopic aromatic nitrile N-oxide. The nitrile N-oxide was synthesized in situ by the reaction of the corresponding hydroxamoyl chloride with molecular sieves 4 Å. The click polymerization of various ditopic diynes and the nitrile N-oxide efficiently produced polyisoxazoles in high yields. The homo ditopic nitrile N-oxide was also useful for the connection of bisacetylene-terminated polymers to give multiblock copolymers in very high yield. The resulting polyisoxazoles agree well with the structural assignment obtained by the 1H and 13C NMR analyses. The generated polyisoxazoles showed improved thermal stability due to the presence of isoxazole moieties. The molecular diversity of the obtained polyisoxazoles was confirmed by the selective transformations of the isoxazole moieties into β-aminoenone or β-aminoalcohol moieties with high conversion rates. The thermal decomposition temperature of the transformed polymers was lower than that of the polyisoxazoles because of the formations of abundant amino and hydroxyl groups. Furthermore, the functionality of poly(β-aminoalcohol) was proven by quantitatively cross-linking the polymers by treatment with terephthalaldehyde or methylene diphenyl diisocyanate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call