Abstract

Entropy-stabilized titanium niobium oxides (TNOs) with crystallographic shear structures (e.g., TiNb2O7 and Ti2Nb10O29) are generally synthesized by high-temperature calcination in an air or an oxygen atmosphere to compensate for their positive enthalpies of formation. In this work, we demonstrate that changing the reaction atmosphere into a slightly reductive environment using in situ carbonization leads to the creation of a new class of TNO with a formula of TiNbO4. Unlike its predecessors, this new lithium reservoir is a rutile phase, and most strikingly, in situ X-ray diffraction analysis revealed that its lithium intercalation occurs via a purely solid-solution process. Since solid-electrolyte-interface-free, high capacity anode materials with long cyclic life are required to meet the stringent requirements of widespread lithium-ion battery utilization, this finding of a new electrode material with purely single-phase lithium intercalation is of great interest for the development of high-performance anode materials. Distinctive electrochemical behavior that is different from that of crystallographic shear structured TNO is revealed by in-depth electrochemical analyses, which is ascribed to the unique structural and electronic properties of TiNbO4. We believe this work opens a new avenue for the development of feasible oxide-based alternatives to graphite, which can be safer and suitable for high-power performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call