Abstract

Weakly Interacting Massive Particles (WIMPs) may constitute a large fraction of the matter in the Universe. There are excess events in the data of DAMA/LIBRA, CoGeNT, CRESST-II, and recently CDMS-Si, which could be consistent with WIMP masses of approximately 10 GeV /c2. However, for M DM > 10 GeV /c2 null results of the CDMS-Ge, XENON, and LUX detectors may be in tension with the potential detections for certain dark matter scenarios and assuming a certain light response. We propose the use of a new class of biological dark matter (DM) detectors to further examine this light dark matter hypothesis, taking advantage of new signatures with low atomic number targets. Two types of biological DM detectors are discussed here: DNA-based detectors and enzymatic reactions (ER) based detectors. In the case of DNA-based detectors, we discuss a new implementation. In the case of ER detectors, there are four crucial phases of the detection process: (a) change of state due to energy deposited by a particle; (b) amplification due to the release of energy derived from the action of an enzyme on its substrate; (c) sustainable but nonexplosive enzymatic reaction; (d) self-termination due to the denaturation of the enzyme, when the temperature is raised. This paper provides information of how to design as well as optimize these four processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call