Abstract

The Guizhou Plateau represents a geomorphic transition between the Tibetan Plateau and the Yangtze River Plain. It likely formed in response to the propagation of surface uplift in southeastern Tibet during India-Eurasia continental collision. However, the uplift history of the region is unclear largely due to a lack of datable material. The bedrock geology is dominated by carbonate rocks, which contains numerous multi-level caves in the main river valleys that are linked to the river incision history. Cosmogenic 26 Al and 10 Be burial dating of sediments in caves and river terraces from the northwestern and southern plateau reveals the fluvial chronology and provides the first direct determination of long-term river incision rates. The caves and terraces on the Liuchong River in NW Guizhou yield burial ages of between 0.41 ± 0.12 Ma and 2.85 ± 0.21 Ma, indicating an average incision rate of 57 ± 3 m/Ma. Four level caves at Libo in southern Guizhou yield burial ages of between 0.56 ± 0.16 Ma and 3.54 (+0.25/-0.22) Ma, indicating slightly slower incision rate (47 ± 5 m/Ma). These new results imply that the high elevation of the Guizhou Plateau had developed before the Late Pliocene, and that surface uplift during the Late Cenozoic was largely uniform across the region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call