Abstract

In this paper, we firstly provide several new characterizations of quasi-Frobenius rings by using some generalized injectivity of rings with certain chain conditions. For example, [Formula: see text] a ring [Formula: see text] is quasi-Frobenius if and only if [Formula: see text] is right [Formula: see text], right minfull with ACC on right annihilators; [Formula: see text] a ring [Formula: see text] is quasi-Frobenius if and only if [Formula: see text] is two-sided min-CS with ACC on right annihilators in which [Formula: see text]; [Formula: see text] a ring [Formula: see text] is quasi-Frobenius if and only if [Formula: see text] is right Johns left [Formula: see text]; [Formula: see text] a ring [Formula: see text] is quasi-Frobenius if and only if [Formula: see text] is quasi-dual two-sided [Formula: see text] with ACC on right annihilators. Moreover, it is shown that a ring [Formula: see text] is quasi-Frobenius if and only if [Formula: see text] is a left [Formula: see text]-injective left IN-ring with right RMC and [Formula: see text]. Also, we prove that if [Formula: see text] is a right duo, right QF-[Formula: see text] left quasi-duo ring satisfying ACC on right annihilators, then [Formula: see text] is quasi-Frobenius. In this paper, several known results on quasi-Frobenius rings are reproved as corollaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.