Abstract
This paper deals with the problems of positive real analysis and control synthesis for a class of discrete-time polytopic systems with uncertainties. The systems under consideration are modelled in a polytopic form with linear fractional uncertainties in its vertices. A new linear matrix inequality (LMI) characterization of positive realness for this class of systems is given. It enables one to check the positive realness by using parameter-dependent Lyapunov function. This new characterization exhibits a kind of decoupling between the Lyapunov matrix and the system matrices, which is subsequently exploited for control design. Based on the new result, sufficient conditions with reduced conservatism are obtained. A numerical example is also included to demonstrate the applicability of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.