Abstract

New cermet (ceramic-metal) composite coatings have been developed for solar absorbers in a solar concentrating system for combined heat and power operating in a mid-temperature range between 250 to 350°C. The coatings were applied on stainless steel substrates. Two types of cermet with expected good duration properties were chosen: Nb-TiO2 and W-SiO2. The basic layer-structure concept consisted of four sub-layers, counted from the substrate: molybdenum infrared reflector, high metal concentration cermet of either Nb-TiO2 or W-SiO2, low metal concentration cermet of either Nb-TiO2 or W-SiO2 and SiO2 antireflection layer. The results from optimised coating fabrication gave solar absorptance and thermal emittance of 0.93 and 0.09 respectively for the Nb-TiO2 cermet and 0.91 and 0.08 for the W-SiO2 cermet based absorbers. Annealing at 350°C did not change the absorptance but decreased the thermal emittance with 0.01 units. Adhesion to substrate and between sub-layers was good and even improved after annealing. In a next step up-scaling to deposition on tubes has been made for the Nb-TiO2 cermet type coating and such absorbers are now operating in the solar concentrating combined heat and power demonstration plant in Malta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call