Abstract

Treatment of 0.5 equiv of [Cp*IrCl(2)](2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded Cp*Ir(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp* = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave [Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)X(-) ([2](+)X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated [Cp'Ir(kappa(2)-P,S)](+)X(-) complexes. Exposure of [2](+)OTf(-) to CO afforded [2 x CO](+)OTf(-) in 91% yield, while treatment of [2](+)B(C(6)F(5))(4)(-) with PMe(3) generated [2 x PMe(3)](+)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic Cp*Ir and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of [2 x CO](+)OTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of [2](+)OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of [2](+)B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)](+)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording [Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)](+)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of [2](+)B(C(6)F(5))(4)(-); however, [2](+)X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of [Cp*RhCl(2)](2) gave Cp*Rh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation [Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)](+)B(C(6)F(5))(4)(-) ([9](+)B(C(6)F(5))(4)(-)), which was transformed into [Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)](+)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike [2](+)X(-), complex [9](+)B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, [2 x CO](+)OTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call