Abstract
Abstract Traditional categorical metrics used in model evaluations are “clear cut” measures in that the model’s ability to predict an “exceedance” is defined by a fixed threshold concentration and the metrics are defined by observation–forecast sets that are paired both in space and time. These metrics are informative but limited in evaluating the performance of air quality forecast (AQF) systems because AQF generally examines exceedances on a regional scale rather than a single monitor. New categorical metrics—the weighted success index (WSI), area hit (aH), and area false-alarm ratio (aFAR)—are developed. In the calculation of WSI, credits are given to the observation–forecast pairs within the observed exceedance region (missed forecast) or the forecast exceedance region (false alarm), depending on the distance of the points from the central line (perfect observation–forecast match line or 1:1 line on scatterplot). The aH and aFAR are defined by matching observed and forecast exceedances within an area (i.e., model grid cells) surrounding the observation location. The concept of aH and aFAR resembles the manner in which forecasts are usually issued. In practice, a warning is issued for a region of interest, such as a metropolitan area, if an exceedance is forecast to occur anywhere within the region. The application of these new categorical metrics, which are supplemental to the traditional counterparts (critical success index, hit rate, and false-alarm ratio), to the Eta Model–Community Multiscale Air Quality (CMAQ) forecast system has demonstrated further insight into evaluating the forecasting capability of the system (e.g., the new metrics can provide information about how the AQF system captures the spatial variations of pollutant concentrations).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.