Abstract

A control method for current-source rectifiers (CSRs), which realizes substantially sinusoidal line currents, unity displacement power factor, and a dc-link current control with excellent dynamic properties is presented. CSRs are usually operated by pulsewidth-modulation (PWM) or space-vector-modulation techniques. However, due to the mains LC filter resonant circuits when using these modulation methods the system stability has to be investigated, resulting in restrictions on the minimum PWM frequency and the minimum size of the LC filter. Furthermore most known dc-link current control loops use dc-link inductors of considerable size. This limits the dynamic performance and, therefore, reduces the attainable efficiency of CSRs. To overcome these problems, a new cascaded dc-link current control system for CSRs is presented. Its inner capacitor voltage controller is based on a time-discrete modulation method, which realizes a fundamentally stable control of the mains LC filter resonant circuits, avoiding the mentioned restrictions. The system controlled by the superimposed dc-link current controller is linearized by a new approach, allowing excellent dynamic performance and, therefore, a comparatively small dc-link inductor to be used. The paper includes guidelines on how to design the mains filter components and the dc-link inductor. The feasibility of the presented cascaded controller is confirmed by measurements taken on a 60-kVA model current-source converter and different loads.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call