Abstract

In the present work, new CaO-based adsorbents were obtained by a fast solution combustion method and high-energy ball-milling process to study their CO2 capture behavior under different moderate pressure and temperature conditions. The as-prepared CaO products were characterized systematically using different analytical techniques such as X-ray diffraction, scanning electron microscopy and N2 physisorption measurements. The results showed that the CaO prepared by solution combustion and ball-milled during 2.5h showed the maximum CO2 adsorption capacity of 9.31mmol/g at 25°C and 1atm mainly via chemisorption with CaCO3 formation, which was corroborated by infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy studies. In general, the obtained results revealed that the synthesized CaO nanopowders from solution combustion that were treated by high-energy ball-milling enhanced their CO2 adsorption capacity due to improved structural and textural properties, and this CaO-based adsorbent can be used as a promising material for CO2 capture in post-combustion CO2 capture technologies on a large scale, under atmospheric pressure and temperature conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call