Abstract

AGIPD (adaptive gain integrating pixel detector) is a detector system developed for the European XFEL (XFEL.EU), which is currently being constructed in Hamburg, Germany. The XFEL.EU will operate with bunch trains at a repetition rate of 10 Hz. Each train consists of 2700 bunches with a temporal separation of 220 ns corresponding to a rate of 4.5 MHz. Each photon pulse has a duration of < 100 fs (rms) and contains up to 1012 photons in an energy range between 0.25 and 25 keV . In order to cope with the large dynamic range, the first stage of each bump-bonded AGIPD ASIC is a charge sensitive preamplifier with three different gain settings that are dynamically switched during the charge integration. Dynamic gain switching allows single photon resolution in the high gain stage and can cover a dynamic range of 104 × 12.4 keV photons in the low gain stage. The burst structure of the bunch trains forces to have an intermediate in-pixel storage of the signals. The full scale chip has 352 in-pixel storage cells inside the pixel area of 200 × 200 μm2. This contribution will report on the measurements done with the new calibration circuitry of the AGIPD1.1 chip (without sensor). These results will be compared with the old version of the chip (AGIPD1.0). A new calibration method (that is not AGIPD specific) will also be shown.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call