Abstract

AbstractLet be a ‐uniform ‐regular simple hypergraph on vertices. Based on an analysis of the Rödl nibble, in 1997, Alon, Kim and Spencer proved that if , then contains a matching covering all but at most vertices, and asked whether this bound is tight. In this paper we improve their bound by showing that for all , contains a matching covering all but at most vertices for some , when and are sufficiently large. Our approach consists of showing that the Rödl nibble process not only constructs a large matching but it also produces many well‐distributed ‘augmenting stars’ which can then be used to significantly improve the matching constructed by the Rödl nibble process. Based on this, we also improve the results of Kostochka and Rödl from 1998 and Vu from 2000 on the size of matchings in almost regular hypergraphs with small codegree. As a consequence, we improve the best known bounds on the size of large matchings in combinatorial designs with general parameters. Finally, we improve the bounds of Molloy and Reed from 2000 on the chromatic index of hypergraphs with small codegree (which can be applied to improve the best known bounds on the chromatic index of Steiner triple systems and more general designs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.