Abstract

Based on the perturbation solution, we derive new bounds on the effective moduli of a two-component composite material which are exact up to fourth order in δμ=μ1—μ2and δK=K1—K2, whereμiandKi,i= 1, 2, are the shear and bulk modulus, respectively, of the phases. The bounds on the effective bulk modulus involve three microstructural parameters whereas eight parameters are needed in the bounds on the effective shear modulus. For engineering calculations, we recommend the third-order bounds on the effective shear modulus which require only two geometrical parameters. We show in detail how Hashin-Shtrikman’s bounds can be extended and how Walpole’s bounds can be improved using two inequalities on the two geometrical parameters that appear in the third-order bounds on the effective shear modulus. The third- and fourth-order bounds on the effective moduli are shown to be more restrictive than, or at worst, coincident with, existing bounds due to Hashin and Shtrikman, McCoy, Beran and Molyneux and Walpole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.