Abstract

During hemodialysis, rapid ultrafiltration often causes symptomatic hypotension. To predict the occurrence of volume-dependent hypotension as early as possible, continuous hematocrit monitoring with the Crit-Line noninvasive monitor has been widely used to measure blood volume changes during hemodialysis. As another potential method of monitoring blood volume variations, we studied blood viscosity, which is theoretically associated with the pressure gradient across the dialyzer. Blood viscosity (calculated by the Hugen-Poiseuille formula) is a major determinant of the blood flow rate and is associated with the pressure difference between the postpump arterial (A) and venous (V) pressures. The A-V pressure gradient fluctuates due to pump pulsation, so we minimized this noise by always reading the pressure gradient at the same point out of 1400 partitions on the rotary pump. To test this synchronized one-point reading method, the A-V pressure gradient was measured using 3 different xanthan gum solutions and was found to be linearly proportional to the model blood flow rate. In an experimental dialysis system using a xanthan gum solution (300 mg/L), the A-V pressure gradient showed a gradual linear increase along with the ultrafiltration rate up to 1 L/h as the viscosity slowly increased in the dialyzer. The changes of blood volume shown by this method were significantly correlated with data obtained using the Crit-Line in 8 patients undergoing hemodialysis. This simple and inexpensive method may allow monitoring of blood volume changes and thus provide data that are beneficial for fluid management in hemodialysis patients suffering from clinical dialysis intolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.