Abstract

Abstract Purpose Although a wide range of keratoprostheses have been developed from various materials over the last 30 years there has been limited optimisation of material properties to enhance clinical performance and minimise tissue incompatibility within the ocular environment. The development of our understanding of the biological interactions between materials and corneal tissues, the failure of existing keratoprostheses, the advances in the design and synthesis of materials of controlled molecular architectures and the advancements in composite biomaterials in recent years provides an opportunity to design enhanced biomaterials for the fabrication of the next generation of keratoprosthetic with improved clinical performance. Methods This paper will review studies undertaken by our group which have enhanced our understanding of the biological interactions of existing keratoprosthetic materials in the ocular environment and the development of novel approaches to new materials for the fabrication of keratoprosthetic based on the utilisation of biomimetic and composite systems and recent advances in the polymeric biomaterials. Results The paper will review data relating to the biological degradation of biomimetic materials and approaches to optimising these processes to provide materials with enhanced tissue integration and reduced inflammatory response. The in vitro biological evaluation of some of these materials indicates that material engineering may improve the clinical performance of biomaterials in the corneal environment. Conclusion The development of novel materials for the fabrication of keratoprostheses relies on improving our understanding of the mechanisms of failure of existing devices and how biomaterials can be engineered to overcome these challenges

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call