Abstract

Dendritic cells(DCs) play a protective role in the antitumor immunity of most cancers, which can be divided into conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Most current studies are only based on either cDCs or pDCs for the study of the relationship between DCs and breast cancer prognosis, without combining the two together. We aimed to select new biomarkers from pDCs and cDCs. In this paper, the xCell algorithm was first used to calculate the cellular abundance of 64 types of immune cells and stromal cells in tumor samples from the TCGA database, and the high-abundance pDC group and cDC group were divided according to the results of a survival analysis. Then, we looked for the co-expressed gene module of highly infiltrating pDC and cDC patients with a weighted correlation network analysis (WGCNA) and screened out the hub genes, including RBBP5, HNRNPU, PEX19, TPR, and BCL9. Finally, we analyzed the biological functions of the hub genes, and the results showed that RBBP5, TPR, and BCL9 were significantly related to the immune cells and prognosis of patients, and RBBP5 and BCL9 were involved in responding to TCF-related instructions of the Wnt pathway. In addition, we also evaluated the response of pDCs and cDCs with different abundances to chemotherapy, and the results showed that the higher the abundance of pDCs and cDCs, the higher their sensitivity to drugs. This paper revealed new biomarkers related to DCs-among them, BCL9, TPR, and RBBP5 were proven to be closely related to dendritic cells in cancer. For the first time, this paper puts forward that HNRNPU and PEX19 are related to the prognosis of dendritic cells in cancer, which also provides new possibilities for finding new targets for breast cancer immunotherapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call