Abstract

Amylase and glucosidase enzymes are the primary harmful source in the development of the chronic condition known as diabetes mellitus. The main function of these enzymes is to break the macromolecules into simple sugar units which are directly involved in the solubility of blood, hence increasing blood glucose levels. To overcome this effect, there is a need for a potent and effective inhibitor that inhibits the conversion of macromolecules of sugar into its smaller units. In this regard, we synthesized thiazolidinone-based indole derivatives (1–20). The synthesized derivatives were evaluated for α-amylase and α-glucosidase inhibitory activity. Different substituted derivatives were found with moderate to good potentials having IC50 values ranging, for α-amylase, from 1.50 ± 0.05 to 29.60 ± 0.40 μM and, for α-glucosidase, from IC50 = 2.40 ± 0.10 to 31.50 ± 0.50 μM. Among the varied substituted compounds, the most active analogs four (1.80 ± 0.70 and 2.70 ± 0.70), five (1.50 ± 0.05 and 2.40 ± 0.10, respectively) of the series showed few folds better inhibitory activity than standard drug acarbose (IC50 = 10.20 ± 0.10 and 11.70 ± 0.10 μM, respectively). Moreover, structure–activity relationship (SAR) was established and binding interactions were analyzed for ligands and proteins (α-amylase and α-glucosidase) through a molecular docking study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call