Abstract

Ceramic-based oxygen permeation membranes (OPM) are considered to be promising for the separation of oxygen from air. However, state-of-art membrane designs are unable to deliver satisfactory performances in terms of permeation flux, mechanical/chemical stability and membrane surface area. In this study, a new bio-inspired design has been successfully introduced in the micro-monolithic membranes made of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) for oxygen separation. By carefully controlling the process parameters of the fabrication and utilizing the hydraulic pressure of internal coagulant, the geometry of channels in the micro-monolith has been converted from a circular shape to a triangle shape with rounded corners. This new bio-inspired, ‘orange-like’ architecture not only reduces the effective oxygen diffusional length down to approximately 50 μm, but also significantly increases the ratio of active region among the overall circumference up to 90%. This new bio-inspired micro-monolithic design displays an excellent oxygen permeation flux of 1.87 ml min−1cm−2 at 950 °C, which is superior to the most reported values from LSCF material systems. In addition, such a design illustrates an excellent mechanical robustness that has long been a bottleneck for LSCF membranes. This work demonstrates a promising solution to tackle the long-existing trade-off between oxygen permeation performance and mechanical reliability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.