Abstract

Monomers derived from renewable sources are of great interest to drive sustainable polymer chemistry. Herein, bio-based furfural, glycerol and lactic acid were used as building blocks to prepare methacrylate monomers via simple transesterification reactions in high yield and purity. The monomers were polymerized and co-polymerized by employing a free radical solution polymerization technique using 1,1-azobis cyclohexanecarbonitrile (ABCN) initiator. The resultant new co-polymers (P(FAMA-co-SoMA), P(FAMA-co-LAMA) and P(SoMA-co-LAMA)) were obtained in high yields and proved to have sizeable molecular weights (Mw from 2540 to 29395 g mol-1 and Mn from 2194 to 7463 gmol-1). Thermogravimetric analysis and differential scanning calorimetry (DSC) measurements on these polymers revealed good thermal properties (thermal stability ranging between 125 °C and 155 °C) with some crystalline regions identified by DCS and PXRD. The polymers were reinforced using cellulose triacetate and polysulfone to give new polymer composites (Psf/PFAMA, Psf/PFAMA-co-SoMA, Psf/PSoMA, CTA/PFAMA, CTA/PFAMA-co-SoMA, CTA/PSoMA), which were amorphous and degraded hydrolytically (in acidic and basic aqueous solutions) by up to 10% in just 24 h. The polymer composites were fashioned into thin films and membranes and applied preliminarily as coatings and water filtration membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call