Abstract
An [$$n, k, d$$n,k,d] code is a binary linear code of block length $$n$$n, dimension $$k$$k and minimum Hamming distance $$d$$d. Since the minimum distance determines the error detection or correction capability, it is desired that $$d$$d is as large as possible for the given block length $$n$$n and dimension $$k$$k. One of the most fundamental problems in coding theory is to construct codes with best possible minimum distances. This problem is very difficult in both theory and practice. During the last decades, it has proved that the class of quasi-cyclic (QC) codes contain many such codes. In this paper, augmentation of binary QC codes is studied. A new augmentation algorithm is presented, and 10 new $$h$$h-generator QC codes that are better than previously known code have been constructed. Furthermore, Construction X has been applied to obtain another 18 new improved binary linear codes. With the standard construction techniques, a total of 124 new binary linear codes that improve the lower bound on the minimum distance have been obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.