Abstract
A set of benzophenone-derived bisphosphonium salts was synthesized and assayed for lethal activity on the human protozoan parasite Leishmania. A subset of them, mostly characterized by phosphonium substituents with an intermediate hydrophobicity, inhibited parasite proliferation at low micromolar range of concentrations. The best of this subset, 4,4'-bis((tri-n-pentylphosphonium)methyl)benzophenone dibromide, showed a very scarce toxicity on mammalian cells. This compound targets complex II of the respiratory chain of the parasite, based on (i) a dramatically swollen mitochondrion in treated parasites, (ii) fast decrease of cytoplasmic ATP, (iii) a decrease of the electrochemical mitochondrial potential, and (iv) inhibition of the oxygen consumption rate using succinate as substrate. Thus, this type of compounds represents a new lead in the development of leishmanicidal drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.