Abstract

Two new isostructural molecular metals-(BDH-TTP)(6)[M(III)(C(5)O(5))(3)]·CH(2)Cl(2) (BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, where M = Fe (1) and Ga (2))-have been prepared and fully characterized. Compound 1 is a molecular conductor showing paramagnetic behavior, which is due to the presence of isolated [Fe(C(5)O(5))(3)](3-) complexes with high-spin S = (5)/(2) Fe(III) metal ions. The conductivity originates from the BDH-TTP organic donors arranged in a κ-type molecular packing. At 4 kbar, compound 1 behaves as a metal down to ∼100 K, showing high conductivity (∼10 S cm(-1)) at room temperature. When applying a pressure higher than 7 kbar, the metal-insulator (M-I) transition is suppressed and the compound retains the metallic state down to low temperatures (2 K). For 1, ESR signals have been interpreted as being caused by the fine structure splitting of the high-spin (S = 5/2) state of Fe(III) in the distorted octahedral crystal field from the ligands. At 4 kbar, the isostructural compound 2 behaves as a metal down to ∼100 K, although it is noteworthy that the M-I transition is not suppressed, even at pressures of 15 kbar. For 2, only the signal assigned to delocalized π-electrons has been observed in the ESR measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.