Abstract
Accurate, rapid detection of atrial tachyarrhythmias has important implications in the use of implantable devices for treatment of cardiac arrhythmia. Currently available detection algorithms for atrial tachyarrhythmias, which use the single-index method, have limited sensitivity and specificity. In this study, we evaluated the performance of a new Bayesian discriminator algorithm in the detection of atrial fibrillation (AF), atrial flutter (AFL), and sinus rhythm (SR). Bipolar recording of 364 rhythms (AF=156, AFL=88, SR=120) at the high right atrium were collected from 20 patients who underwent electrophysiological procedures. After initial signal processing, a column vector of 5 features for each rhythm were established, based on the regularity, rate, energy distribution, percent time of quiet interval, and baseline reaching of the rectified autocorrelation coefficient functions. Rhythm identification was obtained by use of Bayes decision rule and assumption of Gaussian distribution. For the new Bayesian discriminator, the overall sensitivity for detection of SR, AF, and AFL was 97%, 97%, and 94%, respectively; and the overall specificity for detection of SR, AF, and AFL was 98%, 98%, and 99%, respectively. The overall accuracy of detection of SR, AF, and AFL was 98%, 97% and 98%, respectively. Furthermore, sensitivity, specificity, and accuracy of this algorithm were not affected by a range of white Gaussian noises with different intensities. This new Bayesian discriminator algorithm, based on Bayes decision of multiple features of atrial electrograms, allows rapid on-line and accurate (98%) detection of AF with robust anti-noise performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.