Abstract

The problem of industrial dyes depollution has pushed the scientific research community to identify novel photocatalysts with high performance. Herein, new photocatalysts composed of BaTiO3, BaTi0.96Cu0.04O3, BaTi0.96Cu0.02V0.02O3 and BaTi0.96Cu0.02Nb0.02O3 powders were prepared by solid-state reaction. The structural analysis of the samples confirmed the formation of the BaTiO3 structure. The splitting of (002) and (200) planes verified the formation of the tetragonal phase. The XRD peaks shifted, and the unit cell volume expansion verified the substitution of the Ti4+ site by Cu2+, V4+ and Nb5+ ions. The morphological measurements showed that the addition of (Cu, V) and (Cu, Nb) ions changes the particles’ morphology of BaTiO3, reducing its grains size. After the incorporation of (Cu, V) and (Cu, Nb) ions, the band gap of BaTiO3 was reduced from 3.2 to 2.84 and 2.72 eV, respectively. The modification of BaTiO3 by (Cu, Nb) ions induced superior photocatalytic properties for methyl green and methyl orange with degradation efficiencies of 97% and 94% during 60 and 90 min under sunlight irradiation, respectively. The total organic carbon results indicated that the BaTi0.96Cu0.02Nb0.02O3 catalyst has a high mineralization efficiency. In addition, it possesses a high stability during three cycles. The high photodegradation efficiency of Bi0.96La0.02Gd0.02FeO3 was related to the wide-ranging visible light absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call