Abstract

The seafloor spreading of the South China Sea (SCS) was previously believed to take place between ca. 32 and 15 Ma (magnetic anomaly C11 to C5c). New magnetic data acquired in the northernmost SCS however suggests the existence of E–W trending magnetic polarity reversal patterns. Magnetic modeling demonstrates that the oldest SCS oceanic crust could be Late Eocene (as old as 37 Ma, magnetic anomaly C17), with a half-spreading rate of 44 mm/yr. The new identified continent–ocean boundary (COB) in the northern SCS generally follows the base of the continental slope. The COB is also marked by the presence of a relatively low magnetization zone, corresponding to the thinned portion of the continental crust. We suggest that the northern extension of the SCS oceanic crust is terminated by an inactive NW–SE trending trench-trench transform fault, called the Luzon–Ryukyu Transform Plate Boundary (LRTPB). The LRTPB is suggested to be a left-lateral transform fault connecting the former southeastdipping Manila Trench in the south and the northwest-dipping Ryukyu Trench in the north. The existence of the LRTPB is demonstrated by the different patterns of the magnetic anomalies as well as the different seafloor morphology and basement relief on both sides of the LRTPB. Particularly, the northwestern portion of the LRTPB is marked by a steep northeast-dipping escarpment, along which the Formosa Canyon has developed. The LRTPB probably became inactive at ca. 20 Ma while the former Manila Trench prolonged northeastwards and connected to the former Ryukyu Trench by another transform fault. This reorganization of the plate boundaries might cause the southwestern portion of the former Ryukyu Trench to become extinct and a piece of the Philippine Sea Plate was therefore trapped amongst the LRTPB, the Manila Trench and the continental margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.