Abstract
This paper presents new techniques with corresponding algorithms to automate three-dimensional point-cloud georeferencing for large-scale data sets collected in dynamic environments where typical controls cannot be efficiently employed. Beam distortion occurs at the scan window edges of long-range scans on near-linear surfaces from oblique laser reflections. Coregistration of adjacent scans relies on these overlapping edges, so alignment errors quickly propagate through the data set unless constraints (origin and leveling information) are incorporated throughout the alignment process. This new methodology implements these constraints with a multineighbor least-squares approach to simultaneously improve alignment accuracy between adjacent scans in a survey and between time-series surveys, which need to be aligned separately for quantitative change analysis. A 1.4-km test survey was aligned without the aforementioned constraints using global alignment techniques, and the modified scan origins showed poor ag...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.