Abstract
Synapsin I is a synaptic vesicle-associated protein that is phosphorylated at multiple sites by various protein kinases. It has been proposed to play an important role in the regulation of neurotransmitter release and the organization of cytoskeletal architecture in the presynaptic terminal. In the present minireview, I describe the dynamic changes in synapsin I phosphorylation induced by acute neuronal excitation in vivo, and discuss its regulation by protein kinases and phosphatases and its functional significance in vivo. When acute neuronal excitation was induced by electroconvulsive treatment (ECT) in rats, phosphorylation of synapsin I at multiple sites was decreased during brief seizure activity in hippocampal and parieto-cortical homogenates. After termination of the seizure activity, phosphorylation at mitogen-activated protein kinase-dependent sites was increased dramatically. Phosphorylation at a Ca(2+)/calmodulin-dependent protein kinase II-dependent site was also increased moderately afterwards. The dynamic and differential changes in synapsin I phosphorylation induced by acute neuronal excitation may be involved in plastic changes induced by ECT and may have some role in its effectiveness for the treatment of psychiatric diseases in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.