Abstract

The High Luminosity LHC (HL-LHC), the foreseen LHC upgrade, will entail higher levels of instantaneous luminosity by about a factor of 5 from current levels.The electromagnetic calorimeter (ECAL) of the Compact Muon Solenoid detector (CMS) will experience a challenging environment during the HL-LHC phase. As a matter of fact higher event pileup, increasing data rates and harsher radiation environment are some of the expected conditions.A complete redesign of the ECAL on-detector readout electronics have been performed in order to obtain precision timing, noise mitigation and increased sampling rate. As a result a high-resolution, high-speed ADC has been designed to convert the signal from the front-end Trans-Impedance Amplifier (TIA) stage. Each readout channel will produce a large amount of data which will require fast data processing circuitry and high speed serial links. A new digital architecture has been developed in order to decrease the data bandwidth by means of lossless data compression. These functions has been integrated in two ASICs: CATIA and LiTE-DTU, designed in commercial CMOS 130 nm and 65 nm technology, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.