Abstract

In the past decade, numerical modelling has been increasingly used for simulating the mechanical behaviour of naturally fractured rock masses. In this paper, we introduce new algorithms for spatial and temporal analyses of newly generated fractures and blocks using an integrated discrete fracture network (DFN)-finite-discrete element method (FDEM) (DFN-FDEM) modelling approach. A fracture line calculator and analysis technique (i.e. discrete element method (DEM) fracture analysis, DEMFA) calculates the geometrical aspects of induced fractures using a dilation criterion. The resultant two-dimensional (2D) blocks are then identified and characterised using a graph structure. Block tracking trees allow track of newly generated blocks across timesteps and to analyse progressive breakage of these blocks into smaller blocks. Fracture statistics (number and total length of initial and induced fractures) are then related to the block forming processes to investigate damage evolution. The combination of various proposed methodologies together across various stages of modelling processes provides new insights to investigate the dependency of structure's resistance on the initial fracture configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call