Abstract

Recent progress in macromolecular phasing, in part stimulated by the high-throughput structural biology initiatives, has made this crucial stage of the elucidation of crystal structures easier and more automatic. A quick soak in various salts leads to the rapid incorporation of the anomalously scattering ions, suitable for phasing by MAD (multiwavelength anomalous dispersion), SAD (single-wavelength anomalous dispersion) or MIR (multiple isomorphous replacement) methods. The availability of stable synchrotron beam lines equipped with elaborate hardware control and sophisticated data processing programs makes it possible to collect very accurate diffraction data and to solve structures from the very weak anomalous signal of such atoms as sulfur or phosphorus, inherently present in macromolecules. The current progress in phasing, coupled with the parallel advances in protein crystallization, diffraction data collection and so on, suggests that, in the near future, the process of macromolecular crystal structure elucidation may become fully automatic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.