Abstract

In previous studies the activity of the sympathoadrenal system (SAS) in cosmonauts during space flights was evaluated by measuring plasma catecholamines (CA) levels and urinary CA and their metabolites concentrations. Plasma CA levels are accepted indicators of SAS activity, however, they are determined by the plasma clearances as well as the rates of CA release (spillover-SO) into the bloodstream. Nowadays methods are available which evaluate not only plasma levels of CA but also their release, spillover, uptake, reuptake, degradation and also CA synthesis in vivo measured by plasma levels of dihydroxyphenylalanine (DOPA). Plasma concentrations of DOPA, the CA noradrenaline (NE), adrenaline (ADR), and dopamine (DA), the deaminated catechol metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC), and the O-methylated metabolites methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured during immobilization stress (IMO) in conscious rats. Radiotracer methods were used to measure NE SO. IMO markedly increased arterial NE levels but NE SO was less elevated bacause the NE clearance was slightly reduced in IMO rats. Simultaneous measurements of plasma CA and their metabolites provide another means to obtain information about SAS function. For instance, dissociation between changes of plasma DHPG and NE levels can indicate changes in neuronal reuptake of NE. We found marked parallel increases in plasma NE and DHPG levels during acute IMO; however after repeated IMO, plasma NE levels were increased but DHPG responses were less pronounced suggesting a reduced NE reuptake. DOPA, the CA precursor, circulates in plasma at a concentration higher than NE. During stress, increased sympathoneural outflow stimulates DOPA synthesis and release into the circulation supporting the view that changes in plasma DOPA levels during stress reflect in vivo changes in the rate of CA synthesis. We propose to measure the new plasma indicators of SAS activity in cosmonauts and/or in animals before, during and after space flights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call