Abstract
In Ni–Mn–Ga ferromagnetic shape memory alloys, the crystallographic nature of martensitic variant interfaces is one of the key factors governing the variant reorientation through field-induced interface motion and hence the shape memory performance. So far, the crystal structure studies of these materials – conducted by means of transmission electron microscopy – have suffered from uncertainties in determining the number of unit cells of modulated superstructure, and consequently improper interpretations of orientation correlations of martensitic variants. In this paper a new approach is presented for comprehensive analysis of crystallographic and morphological information of modulated martensite, using automated electron backscatter diffraction. As a first attempt, it has been applied for the unambiguous determination of the orientation relationships of adjacent martensitic variants and their twin interface characters in an incommensurate 7M modulated Ni–Mn–Ga alloy, from which a clear and full-featured image of the crystallographic nature of constituent twin interfaces is built up. Certainly, this new approach will make it feasible not only to generalize the statistical analysis of martensitic variant distributions for various materials with modulated superstructure, but also to give insight into the crystallographic characteristics of martensitic variant interfaces and the variant reorientation mechanism of new advanced materials for interface engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.