Abstract

A mathematical model is constructed for simulating thermal regimes of typical electronic building blocks. It describes convective heat transfer in an air-filled cavity having finitely thick heat-conducting walls and containing a heat source. On this basis, flow patterns, temperature fields, and vorticity-vector fields are computed that characterize the convective heat transfer over a range of natural-convection parameters found in practice. Nonstationarity is shown to be a determinant of thermal regimes attained by the system. Computational relations are derived representing the variation of the average Nusselt number with the Grashof number for the boundary of the cavity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.