Abstract

A new approach using combined liquid chromatography–mass spectrometry (LC–MS) with ionspray ionization is proposed for the direct detection of known and new toxins in mussels and phytoplankton. A first stage reversed-phase, negative ion mode, selected ion monitoring (SIM) LC–MS analysis was performed in order to detect DSP toxins in the same chromatographic run with a total run time of 20 min. The toxins analysed included yessotoxin (YTX), okadaic acid (OA) and four of its analogues, dinophysistoxins (i.e. DTX-1, DTX-2, DTX-2B, DTX-2C), and pectenotoxins (PTXs), involving PTX-2, two PTX-2 secoacids (PTX-2SAs), PTX-2SA, 7- epi-PTX-2SA, and AC1, the three isomeric toxins structurally related to PTX-2 recently identified in Irish phytoplankton. Positive samples can, therefore, be analyzed through reversed-phase, positive ion mode SIM LC–MS, in order to perform complete chromatographic separations of the structurally related toxins within the OA and PTX groups. Detailed toxin profiles of a number of toxic phytoplankton and shellfish, from different marine areas, were easily obtained through the new approach. PTX-2SAs and AC1 were found in phytoplankton and shellfish from Ireland as well as in Italian shellfish. Moreover, for the first time there was evidence of the presence of PTX-2 in Irish phytoplankton. YTX was present in Italian shellfish. Four isomeric OA toxins were detected in samples from Ireland with OA, DTX-2 and DTX-2B present in shellfish, and OA, DTX-2 and DTX-2C in phytoplankton. In contrast, OA was the only toxin from this group to be detected in Italian mussels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.